Uptake of EO/Copernicus data for improving the performance of work processes

Glenn Vancauwenberghe
Spatial Applications Division Leuven (SADL)
KU Leuven
Challenge

Need for a common view on **performance** in the context of Spatial Data Infrastructures

- Geomatics
- Economics
- Public administration
- Sociology of organizations
- Law

To investigate and understand the impact of technological, institutional, organizational, legal and economic aspects *(not a real benefits study)*
Challenge

Need for a common view on **performance** in the context of Spatial Data Infrastructures

- Geomatics
- Economics
- Public administration
- Sociology of organizations
- Law

To investigate and understand the impact of technological, institutional, organizational, legal and economic aspects (*not a real benefits study*)
A process view on SDI performance

- **Proposed solution:** focus on the – public sector – processes in which data are created, collected, accessed, processed, used and shared
- Beyond the data creation/collection process, but looking at the **overall policy process** in which the data creation/collection takes place (as sub-process)
- Processes – *relatively* – easy to understand, also by non-experts (and linked with the ‘daily lives’ of citizens)
- Inter-organizational processes, involving municipal, provincial and central government organizations
A process view on SDI performance
Findings & results

Differences in the ‘spatial data performance’ of processes:

1. Relation with explanatory variables, such as the level of standardization, but also organization and governance of the process
2. Impact on the overall performance of the process, in terms of efficiency, quality, flexibility, innovation, transparency and reliability (qualitative information)
3. Significant differences between organizations

<table>
<thead>
<tr>
<th></th>
<th>Zoning Plans</th>
<th>Flood Maps</th>
<th>Addresses</th>
<th>Traffic Accidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency of access</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Intensity of use</td>
<td>Medium/high</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Degree of sharing</td>
<td>Medium/high</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Spatial data performance</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
Findings & results
Ongoing case study

8% of Flanders
Importance of the green network (for local environmental quality of life)
Not only forests and public green, but also gardens (e.g. in the Brussels Capital Region, 43% of the urban green is domestic garden)
Various policy documents and actors recognizing the importance of gardens, but…
Reliable, systematic and integrated base-line data on gardens are almost completely missing

Project idea: explore the potential of remote sensing data (both airborne and satelitte-based) and crowd-sourced data to map and characterize gardens and garden-complexes at a local to regional scale
1. Mask of spatially explicit ‘garden polygons’

2. Generic private green classification

3. Development of crowd sourcing

Ancillary geographic data

LiDAR & orthophotographs
1. Mask of spatially explicit ‘garden polygons’

2. Generic private green classification

3. Development of crowd sourcing

Agricultural land parcels

Ancillary geographic data
1. Mask of spatially explicit ‘garden polygons’

2. Generic private green classification

3. Development of crowd sourcing

Ancillary geographic data
Understanding the (sub-)process

Improving the ‘data sub-process’:

geospatial data + EO-data + citizen data + administrative data

To feed into many different other processes:

- Policy preparation: determining policy goals based on insight on the current state of gardens
- Policy implementation: identification of ‘hot spots’ where policy action is required
- Policy evaluation: monitoring the effect of a specific policy initiative

End-users at different levels and in different sectors (including the citizen)
• Which knowledge/skills are needed (in different project steps)? **Development a Body of Knowledge for EO/GI**

• Cross-disciplinary knowledge/skills (e.g. expert in EO/GI value assessment)
Thank you

Contact information
Glenn Vancauwenberghe
glenn.vancauwenberghe@kuleuven.be

EO4GEO
http://www.eo4geo.eu/
http://eo4geo.ujjis/

MyGardenLab
Thérèse Steenberghen (KU Leuven)
Spatial Applications Division Leuven

Garden Monitor
Ben Somers (KU Leuven)
Remote Sensing and Terrestrial Ecology